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ABSTRACT

It has been found that the beta effect can have an important effect on tropical
cyclones. To conduct an experimental study of tropical cyclone movement on a beta
plane a numerical model was developed. This model is based on the barotropic vorticity
equation and used a semi-Lagrangian technique for the advective terms. The basic

model is studied for accuracy and efficiency. It is seen that the accuracy of the semi-
Lagrangian scheme is very good at moderate grid intervals, 20 km to 40 kin, producing
a much smoother vorticity field than that produced by the finite difference model. The

efficiency of the semi-Lagrangian scheme as the time interval was increased was not fully
achieved due to the shear effect in this regional model. When the beta effect was added,
the model predicted vortex tracks and beta gyres compared well with those obtained
from the finite difference model with a 20 km grid size. However, the semi-Lagrangian
forecast with a grid size of 10 km gave somewhat different track, which could not be

explained.
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I. INTRODUCTION

In December 1944, the U.S. Third Fieet lost 778 officers and men, three ships and
over 140 aircraft to a typhoon in the Phillipine Sea. While many factors contributed to

the fleets entrapment, the most significant were failures in command and lack of quality

weather warning capabilities and observational facilities (Calhoun, 1981).

Since 1944, great strides have been made in determining the position and intensity
of a tropical cyclone through the use of an improved observation network and satellites.

Through the development of computers and numerical models, improvements have also

been made in our ability to forecast the cyclone's movement, In 1990, forecast errors

reported by the Joint Typhoon Warning Center for the Western Pacific are given in

Table 1.

Table 1. AVERAGE FORECAST ERRORS FOR 1990 TYPHOON SEASON
Forecast Veri 'ing Time 24 hrs 48 hrs 72 hrs

103NM 203NM 31ONM

In 1982, Commander U. S. Seventh Fleet declared that he wanted to reduce the
forecast error statistics by approximately 60 percent at each forecast perio".

(EGPACCOM, 1983). As the error rate in 1990 shows little improvement over 1982, to
meet the goals as set down by COMSEVENTfIFLT, continued efforts must be made in
improving our ability to forecast the movement of tropical cyclones.

Forecasting a tropical cyclone's movement is a difficult problem as it depends upon

the interaction between many factors and usually occurs over a data sparse, mainly

oceanic area. After Nuemann (1985), objective tropical cyclone prediction aids can be

classified as either dynamical or statistical. These categories are divided further into six

subdivisions. Statistical models are divided into analog, climatological/persistence, and

statistical synoptic. Dynamical models can be a blend of basic dynamics and statistics,

barotropic, or baroclinic. The statistical forecast approach commonly uses a screening

procedure to select meteorological variables that are correlated with tropical cyclone

movement. The dynamical method involves predictions or the synoptic flow surround-
ing a tropical cyclone and possibly a simulation of the cyclone structure to predict storm



movement. (George and Gray, 1976). Tsui and Miller (1988) showed through their re-

search that while dynamical models have properties that make them the better choice for

a forecast aid, as of yet no one type of forecast model is better in all cases. A major

problem facing many developers of dynamical models is the amount of available com-

puting power. With today's technology, super computers are at least eight times faster

than those of just ten years ago. Though while computers may be faster in the speed in

which calculations are done, the modeler must also develop software to enhance the

speed of the hardware.

Numerous studies on different numerical schemes have been done to date. Some

of these studies have been implemented into objective aids to use in forecasting tropical

cyclones. But despite many advances made in the field of computational fluid dynamics,

the advective terms are still an active area of research (Pudykiewicz and Staniforth,

1984). One scheme that has seen renewed interest is the semi-Lagrangian method for

handling advection in meteorological models. Semi-Lagrangian schemes are not new.

Sawyer (1963) proposed solving the vorticity advection equation with the semi-
Lagrangian scheme. Robert (1981) used a variation of the semi-Lagrangian scheme to
solve the primitive meteorological equations. In 1984, Pudykiewicz and Staniforth re-
searched the schemes use in the solution of the advection-diffusion equation relating it
to pollution models. Staniforth and Templeton (1986) used the semi-Lagrangian scheme

in their research with a barotropic finite element model. Kuo and Williams (1989) ap-
plied the scheme to the Inviscid Burgers Equation showing that at sharp slopes the

method is superior to finite difference schemes. At this time, Florida State University
is using a version of the semi-Lagrangian method in a multi-layered regional model for

the tropics.
A lagranglan method is based on the simple fact that what happens at a future time

at a point is related to what happened at a point upstream at an earlier time. One of the
simplest Lagrangian schemes is the upstream scheme which is described in the following
discussion. Figure 1 on page 3 shows the characteristic which passes through the point
P(m,n+ 1) at which we want to predict the function F. The advective flow is given by
c. Since the function F is constant along the characteristic then

Fp = F(mAx,(n+ I)A1) = F(mAx-6x, nAt) (1.1)

2



where 6x - cAt is the distance an air parcel moves. A linear interpolation scheme is used

to find the value at * point. In general, the stability of the scheme is described by
c > 0 : damped or neutral solutions provided the CFL condition 0 c A : 1 is

met.
c < 0: solutions are amplified or conditionally unstable.

)00

06 NAt

(M.I)AX MAX
- 0X

Figure 1. Upstream Scheme

This simple Lagrangian m-.thod has some excellent properties such as smoothness

of forecast and good phase speed, but it also has too much damping and the time step

must satisfy a restrictive CFL condition. The semi-Lagrangian schemes use higher order

interpolation routines in space to avoid the problem of damping. They also use an im-

plicit approach to allow for larger time steps and guarantee stability under all CFL
conditions.

According to Pudykiewicz & Staniforth (1984), the attractive qualities of the semi-

Lagrangian method that lead one to believe that this method has considerable promise
for handling meteorological problems include:

I. The method is unconditionally stable for increasing time steps.

2. The method is an efficient time integration scheme.

3



3. The method gives smaller phase errors and computational dispersion than most fi-
nite difference or finite element schemes.

4. The method is accurate for a broad range of flows including those with strong de-
formation.

5. The method is flexible allowing for variable resolutions and easy handling of out-
flow situations at boundaries without spurious reflection.

The primary goal of this thesis is to examine how the semi-Lagrangian method
based on Robert's work (1981) relates the movement of tropical cyclones to the

advective processes evident in a regional model. Specifically, the objectives can be stated
as follows:

1. Develop semi.Lagrangian numerical model which solves the nondivergent
barotropic vorticity equation.

2. Determine if the semi-Lagrangian scheme is practical on a large scale in compar-
ison to a standard finite difference scheme.

3. Examine movement of the vortex on a f -plane without mean flow and verify
northwestward drift as analyzed in Chan and Williams (1987) and Fiorino and
Elsberry (1988).

The nondivergent barotropic model developed for this research is discussed in
Chapter 1I. Chapter III discusses experiments with the basic model without considering
the Beta term. Experiments which include the effects of Beta are analyzed in Chapter
IV. Conclusions and recommendations are contained in Chapter V and VI respectively.

4



I1. MODEL DEVELOPMENT

A. GENERAL FORMULATION:
The basis of this thesis is a model developed by Tupaz(1977) and modified by Chan

and Williams (1987) to study applications of the barotropic vorticity equation. The

basic model development is taken directly from Tupaz (1977).

The governing equations are the barotropic vorticity equation using a beta(p) plane
approximation

f .+Uac+V ac +f 0 (2.1)
at ax a.y

and the non-divergent continuity equation

-U V+ (2.2)
ox ay

where

.. au (2.3)

Here fl is the north - south gradient of the earths vorticity and it is given by its value at
10 degrees latitude. Friction and other forcing terms are not considered in this model.
Since the flow is two dimensional and non-divergent, the vorticity field can be repres-

ented by the streamfunction (41) defined as

u=- T, (2.4)

where u and v are the velocities of the flow in the x and y direction, respectfully. Thus

the relative vorticity is

V2T (2.5)

Equation (2.1) now becomes

aV2T 0A' (V2'T + ' OV2'T +fl f = 0 (2.6)
at y ax +ax ay '--/



The mean flow is initialized as the basic state streamfunction ove" a domain defined

as an cast-west channel with cyclic boundary conditions in the zonal direction. At the

north-south boundaries the mean streamfunction is

TjI' 0 at j=O,j-J (2.7)

and

'1-1 - ".J.-2 'Fij-.,m- ,-2 (2.8)

where the meridional domain is defined by

Oj<J (2.9)

Here x - iAx and y - jay. The mean flow used in this study is constant and from the

east. As in Chan and Williams (1987), a vortex is entered into the main flow as the

perturbation quantity of relative vorticity (c'). A cyclonic vortex with a tangential wind

V(r) profile of

V(r) - Vm( 7 )exp[ E l(((2.10)

is used in this study. The radius is defined as r. V. is the value of V(r) at the radius of

maximum wind r. and b is a factor that determines the shape of the vortex. Thus the

vorticity profile is given by

C~)-2v. ( _ (-)') exp[ 1 (2.11
I'm r,-=- 2 r,. ,b7 't(.1

To handle the advection terms the semi-Lagrangian scheme based on an algorithm

of Robert (1981) is used to replace the finite difference scheme used by Tupaz (1977).

Relative vorticity is predicted during successive time steps. Ecuation 2.5 is then solved
for the streamfunction to determine the subsequent wind components used in the

advection scheme.

Equation 2.5 is a Poisson Equation with the streamfunction as the dependent vari-

able and relative vorticity is the forcing term. The Poisson Equation is solved for the
streanfunction with a direct method developed by Sweet (1971). This method uses a

finite difference approximation to Poisson's Equation on a rectangular domain with

6



Dirichlet Boundary Conditions; matrix is inverted directly. The the boundary conditions

are as follows:

a. Northern (j =J) and Southern (j = 0) Boundaries:

T',j - 0: i - 0,1,2,,. I (2.12)

T'j'0 = 0: 1- 0,1,2,.. 1 (2.13)

b) Eastern (i - I) and Western (i -0) boundaries: These boundaries are periodic

where

T'jIj :w T'j-_ ,j (2.14)

and

'2, ij T'l, (2.15)

Further details on the method used to solve the Poisson Equation can be found in

Tupaz (1977).

B. SEMI-LAGRANGIAN METHOD

In this study, we defined a regular mesh of M by M points where (x,y) is defined to
be a point of the mesh. At each mesh point, we know C, u and v at time t. Equation

2.1 is rewritten by the following approximate equations:

-(x ,,t+At =(x-2ay-2b,t-At)-2bfl (2.16)

a = Aiu(x-a,y-b, 1) (2.17)

b At(x-a,y-b, t) (2.18)

The following algorithm modeled after Robert (1981) and Pudykiewicz and Staniforth

(1984) provides a solution to the vorticity equation by the semi-Lagrangian method.

1. Solve equations 2.17 and 2.18 iteratively for a and b displacements in x and y, re-
spectfully. An interpolation formula is used to evaluate u and v between mesh
points.

2. Use an interpolation foxmula to obtain upstream values oft.

3. Add in term pertaining to the earths vorticity (-2bl)

4. Repeat steps I to 3.

7



In step one, an iterative routine is required because a and b appear on both sides

of equation 2.17 and 2.18. Approximate values of a and b are used to evaluate the

right-hand side of the equation. In this study, we used a and b at the previous time step

as the first guess. The iteration technique is assumed to converge quickly to a more

accurate value. Robert (1981) showed that after two iterations the differences were quite

small. In Pudykiewicz and Staniforth (1984) the fixed point theorem of Conte and

Deboor (1972) was used to assure convergence of the iteration technique. In this study,

an error value of 1.0 x 10-1, which equates to an error of ten meters, controlled the

number of iterations. Decreasing this error value increased the number of iterations,

cost more in computing efforts, and did not significantly improve the forecast ability of

the model,

In step three, we considered

C(xk,,+At)+kty, t+At) - C(x-2a,y-2b, t-At)+]ty-2b, t-At) (2,19)

recombining equation 2.19

C(xy,t+At) - C(x-2a,y-2b, t-At)+Jky-2b, t-At)-Ay, t+At) (2.20)

If we use the beta approximation and let f=ff+Pi, then equation 2.20 simplifies to

equation 2.16.

C. INTERPOLATION

Interpolation by bicubic splines was chosen for this research. During interpolation,

the Beta term was set to zero. The interpolation code used was taken and modified from

Prof.M. Peng. The method of bicubic splines consisted in fitting the following curve

3 3

F(xy) = Z Z Cm...(X -X' Y Y') (2.21)
m=0 n=O

to 16 coefficients of a four point square in which the desired point sought is located

within the four point square. East -west boundary conditions again were set to be pe-

riodic to keep the vortex within the channel, If an upstream point was located outside

the grid on the north or south boundaries the value calculated at the nearest boundary

was used,

8



IW. ACCURACY OF THE SEMI-LAGRANGIAN MODEL

A. BASIC COMPARISON
In this chapter, results are presented from various iterations of the developed semi-

Lagrangian model. In these experiments, the effects of beta were not included. In the

first experiment, we compared the semi-Lagrangian model with the finite difference

model used it, Chan and Williams (1987). The finite difference model with a time step

of six minutes and a spatial separation or 20 km was used as the control forecast. With
the movement or the vorticity maximum, both models were comparable maintaining

constant speed. Figure 2 though shows that the senfi-Lagrangian forecast maintained

a smoother track in regards to direction than that of the finite dif1irence model.
Vortex Tracks at 6-h Intervals (O-72h) (bas(.d on maximum of ')

400 ..

*-4FD MODEL
4-SL MODEL

300

200

0

-100-10 p oo

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000

X-DISTANCE (km)

r..= 100., km v = 40. ms" b= 1.

Figure 2. Basic Comparison Forecast Tracks: Finite Diflerence and Semi-

Lagrangian Models both run with the Time step - 6 nin and Grid in-

terval = 20 KM

9



The smoothness of the track may be due to semi-Lagrangian scheme, or more directly

related to the damping from the interpolation method. To see to what extent damping
is experienced in this model, we ran the basic model without the mean flow. With a time

step of six minutes and a spatial separation of 20 kin, the total loss in magnitude of the

center vorticity value during the 72 hour period was .33 x 10-Is- ', where the initial value

was 217.46 x 10-Is-I . Due to this very slight amount of damping at our shortest time
step, we believe the forecast track from the semi-Lagrangian forecast more truly reflects

the correct forecast.

Throughout the 72 hours, while with both models the vortex center maintained its
relative shape, the semi-Lagrangian model maintained the magnitude of the center

slightly better by maintaining a tighter vorticity gradient at 72 hours as seen in

Figure 3 on page 15. In this basic comparison, it is difficult to say which model was

better, While the semi-Lagrangian model gave a slightly better forecast, the finite dif-

ference model was definitely more economical when considering computer resources.

For an equal M x M grid, the size of the memory region needed to be increased by one

third for the semi-Lagrangian model due to the calculation of the bicubic coefficients.
Also the run time for tli semi-Lagrangian model was three and one half times the time

required for the finite difference model to run. The vortex track from the finite difference

scheme also is improved when we follow the streamfunction minimum.

B. TIME STEP VARIATIONS

As stated in the introduction, one of the semi-Lagrangian model's significant fea-

tures is its ability to give an accurate forecast while extending the time step, In the next

experiment, we tested the model with varying time steps. Our comparison finite differ-

ence model, which is restricted by the CFL condition U <.707, became unstable at
AX

a time step slightly less than seven minutes. Therefore we could not compare the semi-

Lagrangian model with the finite difference model.
When we doubled the time step to twelve minutes we saw some improvement in the

semi-Lagrangian models forecast through 48 hours. This was expected due to the fewer

number of interpolation steps required. This basically agrees with the findings in Robert

(1981) that there is no appreciable truncation error added as the time step is increased,
The vorticity maximum showed less damping while the track remained smooth both in

direction and speed. This also decreased the overall CPU time to almost one third of

that required at a time step of six minutes. Continuing in this same vane, the same type
of improvement was expected when tripling the time step to eighteen minutes. Though

10



at this point, we no longer had quick convergence of the iteration scheme for calculating

the displacement values. Pudykiewicz & Staniforth (1984) referenced the fixed point

theorem of Conte & Deboor which states that the convergence of the iterative technique

is assured provided that the first partial derivatives are continuous, that At is sufficiently

small, and that the first guess is sufficiently close to the true solution. The condition

derived by Pudkiewicz & Staniforth in their paper for convergence is of the form

Atmax(IuxI,IuuyJ,Jvxj,IvyI) < 1 (3.1)

The shear seen in a strong tropical system as depicted in this model given by the profile

in chapter two is on the order of 4.0 x 10-4s-. The maximum At for continued conver-

gence is less than 41 minutes which is lower than those seen in other studies reviewed.

The values of the displacements at six and twelve minutes show that at the shorter time

step the displacement stayed within one grid region. At twelve minute time steps, the

displacements in the region of the vortex came from two or three grid regions away

along a curved trajectory. Thus, the first guess becomes increasingly less accurate as

compared to the true solution for points near the vortex. As we increased the time step,

the number of iterations increased from two iterations at six minutes, to six iterations

at 12 minutes, to 30 at 18 minutes, Computing resources lirited further testing of in-

creasing the time step. It is seen as stated in Kuo and Williams (1989), that the semi-

Lagrangian application is limited by the variation in velocity and in this study by the
curvature of the flow, Table 2 on page 12 provides the relative magnitude of the
vorticity maxima during the different integrations of the semi.Lagrangian model and the

comparison finite difference forecast for the first 48 hours. The magnitude is taken as

the maximum value at a grid point.
At this point, we looked at the results as we lowered the level of accuracy required

in the iterative step. As stated in Chapter II, the error bound set for the semi-

Lagrangian model was 1.0 x 10-s. Little improvement was seen with higher levels of
accuracy in displacement during our initial tests with a time step of six minutes, In the

following experiment, a time step of 15 minutes was used. Three integrations of the

semi-Lagrangian model were run. The first run had a error bound of 1.0 x 10-1 to con-

trol the number of iterations to find the displacements. Two iterations were required to

meet this restriction set. As expected, the forecast was much less accurate with signif-

icant damping. The two other integrations of the model were completed with an error

bound of 1.0 x 10-4 requiring three iterations to meet and 1.0 x 10-s requiring ten

11



Table 2. MAGNITUDE OF VORTEX FOR DIFFERENT ITERATIONS OF
MODEL

FD 6 min SL 6 min SL 9 rin SL 12 min
0hr 217.46 217.46 217.46 217.46

6 hr 173 183 186 189

12 hr 172 174 178 182

18 hr 171 171 176 176

24 hr 166 169 175 175
30 hr 167 166 173 172

36 hr 162 164 170 170

42 hr 156 163 168 170

48 hr 153 161 168 174

iterations, respectively. The 12, 24 and 36 hour forecasts for each of the three inte-

grations are shown in Figure 4 on page 16. In run one with the largest error bound, the

vortex steamfunction pattern is much weaker then the other two runs. The vorticity field

also loses its symmetric shape during the first twelve hours with the lower number of

required iterations. The second and third runs are comparable through the first 18 hours

thereafter, run two with an error of 1.0 x 10- 4 begins to show more damping and a dis-

tortion of the vorticity field. Run three produced a forecast as accurate as the forecast

run at a time step of six minutes seen in Figure 3 on page 15. Table 3 on page 13

provides the relative magnitude of the damping effects at lower error restrictions. Values

presented again are the maximum value at a grid point.

Wide differences in the center's position also occurred with runs one and two. In-

consistencies in the velocity and direction of the vorticity maximum's movement was

experienced. When we returned to our "ideal" error of 1.0 x 10-1, the track returned to

the smooth forecast expected with the semi-Lagrangian method. Figure 5 on page 17

shows the forecast tracks from each of the three runs.

C. GRID SIZE VARIATIONS

Numerical modeling by finite difference models has also been limited by the spacing

of the grid points. We know that the numerical solution will be more accurate when the

grid size, Ax, is small or in other words, when there are many grid points to resolve a

given wavelength than when there are few (f-laltiner & Williams, 1980). With this in

12



Table 3. MAGNITUDE OF VORTEX WHEN VARYING DISPLACEMENT
ACCURACY

.001 .0001 .00001

0hr 217.46 217.46 217.46
6 hr 156 180 189

12 hr 144 162 177

18 hr 134 149 170

24 hr 134 142 168

30 hr 129 131 166

36 hr 127 128 164

42 hr 121 124 162

48 hr 122 116 162

mind, we experimented with doubling the grid spacing in both the semi-Lagrangian

model and the finite difference model. Again we used a time step of six minutes for the

comparison. The tracks of both model forecasts are shown in Figure 6 on page 18.

As with the lower resolution experiments, the finite difference track shows more oscil-

lations from a smooth track. The observed inaccuracies noted can be attributed to the

process in which the vortex is found when using a finite difference scheme. In a finite

difference scheme, the vortex center is located within a grid space by bi-linear interpo-

lation only. When the resolution is increased, the error caused by the bi-linear interpo-

lation scheme is greatly reduced and the track becomes smooth with less oscillations

in the speed of the vortex center. Also as stated previously as the streamfunction field
Iin the finite difference model is smoother, following the streamfunction minima would

give a smoother track. For the first 12 hours, both models maintained equal magnitudes

of vorticity, but it took longer for the interpolation routine of the semi-Lagrangian

method to settle out causing an increase in magaitude loss with the semi-Lagrangian

forecast.

As stated in the introductory chapter, the semi-Lagrangian method gives smaller

phase errors and is not effected by computational dispersion as finite difference models

are. Spatial differencing in the finite difference schemes tends to cause an under estimate

of the phase speed for the short waves. After Haltiner and Williams (1980), with a sec-

ond order finite difference scheme, the speed of the numerical wave is always less or at
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most equal to the true wave speed. In addition to as AxIL -0, where L equals the

wavelength, the phase speed of the finite difference wave is equal to the true speed.

Waves that are relatively long compared to Ax have little phase speed error.

Computational dispersion, a source of error in forecast models, occurs because the

numerical phase speed varies with the wavelength where the true phase speed is constant

for all wavelengths. Figure 7 on page 19 shows how the finite difference model became

distorted as time passed. The shorter wavelengths are seen trailing the longer waves.

The semi-Lagrangian model more closely resembles the true solution which has the same

phase velocity for all wavelengths.

D. SUMMARY

In summary of this chapter's results, we saw that both models gave comparable

forecasts at a time step of six minutes, though the semi-Lagrangian with its need for

more calculations is not as efficient. As expected, the forecast ability of the semi.

Lagrangian model improved as we lengthened the time step. Though, due to the shear

and curvature experienced with the vortex, large time steps of over one hour were not

practical. Further research into changing the accuracy on the displacements, found in

this case with a strong cyclone restricting the model to a predetermined number of iter-

ations or applying a mean error restriction across the grid is not optimal. An experiment

done by setting an error bound of 1.0 x 10-1 on the displacement values of the inner 60

grid points required an average of six iterations to meet. A fairly accurate forecast was

produced through 12 hours as seen in Figure 8 on page 20. A large difference can be

seen between these results and those shown in Figure 4 on page 16 which was completed

with a average error bound of 1.0 x 10-1 placed over the entire grid. In the future, it is

suggested that a set error bound for the displacement be calculated at each grid point.

In this code, the bicubic spline routine was not optimal for this use as it calculates over

an entire field vice a single point.

The experiments with grid spacing proved that the semi-Lagrang'an gives good

phase speed and is not hampered by computational dispersion experienced with the finite

difference models.
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IV. BETA DRIFT AND MODEL ACCURACY

It has long been known that tropical cyclones have a tendency to move poleward
and westward even in the absence of any mean flow. This is the essence of the Beta Drift

Theory. In Chan and Williams (1987), it was proven both analytically and numerically

using a nonlinear model that the Beta term has two major effects. One, is the elongation
westward of the vortex and the asymmetrical distribution of the winds, Second, is the

northwest advection of the vortex, In this chapter, we will compare the results of our

semi-Lagrangian model to the finite difference model used by Chan and Williams (1987)

and Peng and Williams (1989).

A. NO MEAN FLOW EXPERIMENTS

In these experiments, the mean flow was excluded. In the first experiment, we per-

formed a basic comparison between the semi-Lagrangian and the finite difference model

using the same time step and spatial resolution. In the next few experiments, we in-

creased the time step as in Chapter III keeping the grid size the same. Lastly, we varied

the grid size to see what effect it would have on the forecast.

1. Basic Comparison

In the basic comparison, we looked at the semi-Lagrangian model and the finite

difference model results run with our control values of a time step of six minutes and the

grid size of 20 km The stream function and vorticity fields for the semi-Lagrangian

model at 0, 24, 48 and 72 hours are given in Figure 9 on page 27. Similar to the run
made by the finite difference model, the vortex is seen to elongate westward. Chan and
Williams in their 1987 paper explained the westward elongation to be a result of the

dispersive effects of the rossby waves or also termed the 'linear beta effect". The slight

southwest-northeast tilt has been explained by previous research to be due to the inter-

action of the linear beta effect and the nonlinear advective terms. As with the earlier

study with the finite diffhrence model, the wind pattern showed the development of a

speed maximum to the northeast of the center and a minimum in the flow to the south.

west. This asymmetry increases as the maximum wind increases as we progress through

the foreast period. In this case without any mean flow advection, the finite difference

model maintained significantly higher values of vorticity than the semi-Lagrangian

model.
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The tracks of the two model runs are shown in Figure 10 on page 28. The solid

line is the semi-Lagrangian forecast which shows as in the basic comparison of Chapter
III that it maintained a smoother forecast track than that of the finite difference model.

As seen in Chan and Williams (1987), our model also shows an increasing speed of ad.
vance of the vortex from .6 m/s during the initial six hour forecast period to 2.9 m/s
during the last six hours of the forecast. Further investigation into the speed of the

vortex movement showed a period of rapid growth in the translation speed between six

and 12 hours, near linear growth between 12 and 48 hours and a steady growth period
after 48 hours which follows results found in Fiorino and Elsberry (1989). The north.

west displacement and the acceleration of the vortex center are similar to those seen by
Chan and Williams and attributed to the development of the east-west asymmetry in-

duced by the Beta effect. Table 4 on page 23 gives the six hourly direction and speed

for each of the two runs. In their study, Chan and Williams saw significant oscillations

in the forecast track, though with the semi-Lagrangian forecast the direction was more
constant, varying within three degrees of 329 degrees. The finite difference scheme
varied between 317 and 350 degrees. The consistency of the semi-Lagrangian scheme

here is related to the smoothness of the vorticity field while with the finite difference
scheme the vorticity field is much noisier. In the finite difference model if we would

track the streamfunction minimum, the forecast tracks would be more similar. The

speed of movement in the semi-Lagrangian forecast was also more constant leveling off

or decreasing slightly at the end of 72 hours.

2. Time Step Variations

Again as in Chapter 11I, we ran the semi-Lagrangian model increasing the time
step to nine minutes and then doubling it to twelve minutes. As before, we saw the

number of iterations to achieve the acceptable error level increased as the time step in-

creased. As seen before in the results in Chapter I11, we had some improvement in the
forecast in each run as we increased the time step. The magnitude of the vorticity in-

creased slightly, 1% higher, at each forecast interval using a twelve minute time step
then when using a six minute time step. The overall pattern of the streamfunction and

vorticity fields at the time steps of six, nine and twelve minutes remained the same except

for the earlier appearance of the weak anticyclonic circulation to the east of the vortex
and the further elongation to the west of the outer streamfunction field as the time step

increased. Figure 11 on page 29 shows the streamfunction and vorticity fields for (a)
integration with the time step of nine minutes and, (b) a time step of twelve minutes.
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Table 4. TRACK COMPARISON SEMI-LAGRANGIAN/FINITE DIFFERENCE

Semi-Lagrangian Finite Difference
Hours Dir Spd Dir Spd
0-6 330.1 deg .6 mIs 344.4 deg .4 m/s

6-12 326.4 deg 1,2 m/s 322.3 deg 1.3 m's
12-18 326.6 deg 1.6 m/s 330,8 deg 1.8 ms
18-24 328,5 deg 2.0 m/s 328.5 deg 1.9 ms

24-30 327.7 deg 2.3 m/s 326.0 deg 2.2 m/s
30-36 328.1 deg 2.5 m/s 332.6 deg 2.9 m/s
36-42 329.5 deg 2.7 m,:s 316.8 deg 2.7 m/s

42-48 329.5 deg 2.8 m's 350.3 deg 2.1 mIs

48-54 329.6 deg 2.9 m/s 327,0 deg 3.7 m/s

54-60 331.4 deg 2.9 m's 325.6 deg 2.7 m's

60.66 330.9 deg 2.9 m's 337.9 deg 2.8 rnis

66-72 332.2 deg 2.9 ms 328,4 deg 3.0 m/s

increased. Figure 11 on page 29 shows the streanfunction and vorticity fields for (a)

integration with the time step of nine minutes and, (b) a time step of twelve minutes.

In turn, the component wind fields maintained speeds also up to 1% higher as we in-

crcased the time step from six to 12 ninutes.

Figure 12 on page 30 shows the forecast track for both the six minute and

twelve minute run through 72 hours. As one can see, with the increase in time step, the

vortex position reached points further to the northwest. Again when looking at the

translation speeds between subsequent positions, we were able to set. the same general

pattern as we saw using a six minute time step.

The question arose as to why do we saw this advance in position with increased

time steps. Fiorino and Elsberry (1989) discussed that subtle changes in the outer vortex

structure may lead to significant track deviations. They indicated that changes on the

order of 1-3 ms in the wind field have a significant effect on the track. An experiment

to see what changes in the symmetric vortex's mean wind profile occurred during each

of the runs was performed. It showed that at a radii of 100 to 500 km the mean wind

field was maintained slightly stronger at a time step of 12 ninutes compared to that at
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3. Grid Size Variations

A difficulty often encountered in the tropical regions is the inadequate amount

of observed data for model initialization especially when dealing with fine mesh grids,

As seen earlier in Chapter III, the semi-Langrangian model performed well when we

used a coarser grid. No spurious errors were added to the forecasts. Figure 13 on page

31 is the streamfunction and vorticity fields for taus 0, 24, 48 and 72 with the grid

spacing interval increased from 20 km to 40 km. The time step is 12 minutes. In com-

parison to Figure 9 on page 27 a forecast run at a 20 km resolution and a 12 minute

time step, the streamfunction pattern is very similar. The noticeable difference is in the

vorticity pattern. As noted in Chapter III, there is a large loss in the magnitude of

vorticity between the initial and the 18 hour forecast as we increased the grid spacing.

The magnitude of the center vorticity at the 72 hour forecast with a spatial interval of

40 km is 117 x 10-Is-I while the center vorticity with a 20 km grid interval is at

165 x 10-Is-1. The damping associated with the interpolation scheme is more apparent
with a larger grid interval.

The forecast track for this model integration is shown in Figure 14 on page 32.
Again, the same growth pattern is seen in the translation speeds as is seen in the semi-
Lagrangian forecast run at 20 km. Comparing the overall movement of the vortex be-
tween this run of the semi-Lagrangian model and the run at a time step of 12 minutes

and a grid interval of 20 kin, shows that the forecasts are nearly the same. A comparison
to the finite difference forecast at a grid interval of 40 kilometers is also presented. As
in Chapter III, the finite difference model's forecast track took greater departures from
a straight line track at larger grid intervals.

In an effort again to see if the damping factor is responsible for the smoothness

of the track, we ran another integration of the semi-Lagrangian model. In this inte-
gration, we used a grid interval of 10 km and a time step of six minutes. We compared

the results to the run completed at a time step of six minutes and a grid interval of 20
kn. The forecast track for he 10 km run is pictured in Figure 15 on page 33. Knowing
that the interpolation scheme produces less damping with a smaller grid interval, we
supposed that the small scale features that may have been masked by the damping at

larger grid intervals would bring in track deviations. In this integration at 10 kin, the
vorticity magnitude was maintained at significantly higher values and the forecast track

took less deviations in direction than the track with a greater grid interval. We also
observed, that with the greater resolution run, the direction of motion of the vortex took

on a more westerly direction though the overall distance travelled was similar.
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observed, that with the greater resolution run, the direction of motion of the vortex took

on a more westerly direction though the overall distance travelled was similar.

B. ASYMMETRIC CIRCULATIONS

Earlier studies have shown that the asymmetric circulation patterns are closely re-

lated to track orientation. In the following experiments, we look at the wave number

one asymmetry in the azimuthal direction for our numerical model. This was obtained

by Fourier analysis of the solutions patterned after work of Fiorino and Elsberry (1989).

Figure 16 on page 34 shows the evolution of the wave number one gyre with time. This

evolution compared closely to the results of Peng and Williams (1989). As in Fiorino

and Elsberry (1989) which referred to these gyres as "Beta Gyres" the general features

of the asymmetric streamfunction are the same for the semi-Lagrangian model. As they

listed the pattern includes:

I. A dipole like pattern with an anticyclonic gyre on the east and a cyclonic gyre to
the west of the center.

2. Straight flow between the centers of the cyclonic and anticyclonic gyres oriented
to the northwest.

3. A small perturbation in the center of the pattern.

Figure 17 on page 35 shows how the amplitude of the streamfunction gyre in-

creases with time, This figure is based on data from the model run at a time step of six

minutes and a grid spacing of 20 km. The values are nondimrensional. In their research,

Fiorino and Elsberry showed that there were three phases to the growth pattern in the

amplitude of the gyres. These were the rapid phase, linear phase and steady phase. The

same basic pattern is seen here in our research and it correlates to the translation speed

evolution.

Figure 18 on page 36 shows how the growth in the amplitude changed between the

six minute and the 12 minute run of the semi-Lagrangian model. As depicted, the overall

pattern of growth did not change. The amplitude magnitude though was greater for the

12 minute run at all forecast intervals. The amplitude of the nine minute run fell be-

tween the six and 12 minute data. Note that at the end of the 72 hour forecast period

we showed a slight decrease in the amplitude of the gyres and a slight slowing of the

vortex translation speed. This data reinforces the interpretation made by Fiorino and

Elsberry (1989) that there is a strong relationship between the vortex movement and the

asymmetric circulation in tile vicinity of the vortex's center.
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C. SUMMARY

In this chapter, we ran experiments with and without the mean flow included. In

each experiment, the forecast field changes in a way that had an effect on the movement

of the vortex. Specifically, we saw changes in the outer wind fields which has been dis-

cussed in other research to be a possible cause in controlling vortex movement. Other

experiments which were run revalidated that there exists a correlation between the evo-

lution of the wave number one asymmetry and the change in the vortex's translation

speed. The strength of the asymmetrical gyre and orientation of the "ventilation flow"

were also seen to change as we varied the time step or the grid interval.
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Figure 10. Basic Comparison Forecast Tracks with Beta: Semi-Lagrangian and
Finite Difference Models. Both models run with a rime Step of 6 min
and a Grid Interval of 20 km
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V. CONCLUSION

During this research, a model was developed to see if the semi-Lagrangian method

is practical on a regional scale for use in forecasting the movement of tropical cyclones.
40 Throughout this research, we compared the results to a finite difference model used in

previous research to study different effects on the movement of tropical systems.
In Chapter III of this study, we looked at how the model performed in a basic state

with a mean flow from the east, no beta term was included. In this case at comparable

time steps and grid intervals, both models performed well. The exception was the
steadiness observed with the semi-Lagrangian model forecast track. The semi-

Lagrangian model was more consistent in both speed and direction. As expected, as we

increased the time step, the semi-Lagrangian model gave a better forecast. Yet, the large
time steps seen in other research were not possible due to the curvature and shear of the
flow near the storm center. The largest time step practical in this study was six times

the largest time step possible in the finite difference model. Though between two and

three times the maximum time step of the finite difference model, the number of iter-

ations to find the displacement grew rapidly. This resulted in little improvement in CPU

time efficiency as the time step was lengthened. When varying the resolution, exper-

iments proved that the semi-Lagrangian model gives good phase speed and is not ham-

pered by computational dispersion as seen in the finite difference model. Though, it was

seen that the magnitude of the fields in the early forecast periods of the semi-Lagrangian

model at coarser grids was much lower than that of the finite difference model. The

amount of damping experienced was more a function of the grid interval than the time

interval.

In this model, the accuracy of the displacement during the iteration step was deter-

mined to be very important in regards to the accuracy of the forecast, becoming more

significant when the time step was increased. The number of iterations required to meet

a certain error restriction rapidly increased as the time step increased which caused the

computer run time to increase significantly. Thus as we increased the time step, no

savings in computer resources were experienced.

In Chapter IV, we looked at how this model handled the movement of the vortex

on a beta plane. To isolate the beta effect, we left out the mean flow. The results of

our research followed that of previous work. The general track of the vortex went to the
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northwest. Changing time step and grid size, caused changes in the forecast parameters

specifically the component wind fields. This is due to the different levels of damping that

occurred with each of the different runs. Extending the grid interval to 80 kin, demon-

strated significant damping in all fields. The wind fields had speeds of 10-15 rn/s less

than the runs completed at 40 kin. The forecast track was erratic with a more northerly

drift. The overall distance traveled was also significantly shorter. In Chapter III when

we varied the time step and grid interval, the forecast track was comparable in all cases.

Though, in the experiments in chapter four with beta included, the forecast tracks dif-

fered from slight t. z;gnificant changes in direction and speed of movement.

Changes in the tir, '.nterval also produced changes in the asymmetric wave number

one circulations, beta gyres, Increasing the time step, increased the amplitude of the

gyre and in turn strengthened what Fiorino and Elsberry (1989) referred to as the ven-

tilation flow between the two gyres. Increasing the resolution also changed the orien-

tation of the gyres and the amplitude of the gyres.

In conclusion with the semi-Lagrangian model, we did not see any convergence of

the forecast tracks to a "true track" as we varied the resolution as is found with the finite

difference schemes. This may be related to the interpolation routine of spline fitting.

Though much evidence also relates this occurrence to the strength of the component

wind fields. The strength and orientation of the asynunetric gyres also corresponded

directly to the changing track motion of the vortex. Though the steadiness of the track

of the semi-Lagranglian is better to isolate the effects of the varying parameters and not

the movements caused by mathematical calculations, one needs to ensure the track

changes are not due to the scheme itself. The semi-Lagranglian scheme has some positive

contributions to future study and use in tropical models. Though modifications will be

required to improve the efficiency of the scheme used in this research. Also, the question

of solution convergence must be re-examined.
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VI. RECOMMENDATIONS

The following recommendations are made for follow on study:

Improvements to the Model

1. Change bicubic spline routine so as it can be applied to each point individually
vice over the entire grid field to save time.

2. Set the error restriction during the calculation of the displacement so as it is
equal at each point and not a field average.

Follow on Study
1. What relation exists between the wind fields in the various runs at different time

steps and grid intervals and how do they correspond to the observed track
changes,

2. Detail the features of the asynunetric circulation that change between iterations
of the semi-Lagrangian model.
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